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THERMAL CONDUCTIVITY OF A MULTICOMPONENT GAS MIXTURE IN THE

PRESENCE OF EQUILIBRIUM CHEMICAL REACTIONS
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Using methods of the thermodynamics of irreversible processes, an
expression is obtained for the thermal conductivity of multicomponent
gas mixtures,

When chemical reactions take place between the
components of a gas mixture, it is expedient to in~
vestigate heat and mass transfer by introducing the
transformed mass and energy fluxes [1]

f
Ji=K ~x YKy (=1,23.,0 @

k=1
Jo=—h ¥ K. (2

In the absence of external forces, the phenomeno-
logical equation connected with transfer of mass and
energy may be written in the form

)

i
K; = *2 ag-grady, (i=1,2,3, ... (3

k=]

Relations (1)—(3) were used by De Groot [2, 3] to
determine the thermal conductivity, concentration
gradients, and temperatures relating to the special
case of a chemically reacting binary mixture. In our
paper, as an example of a three-component mixture
reacting according to the scheme A = B+ C, we
examine the general case of thermal conductivity of a
multicomponent mixture, A relation is established
between the ordinary phenomenological coefficients
Lyy» Lyj» Lij and the phenomenological coefficients
a. For the chemically reacting binary gas mixture we
find that such a relation is not mandatory, since in
this very simple case we may obtain expressions which
allow the values of @ to be determined directly from
the values A, Dj; and Dy, without establishing a
general relation between a and Lyy, Lyj, Lij, as De
Groot did.

Allowing for the assumptions made in [2] and [3],
the expression for the effective thermal conductivity
may be written in the form

h2
bl = TR 1 @

where

X; = 11Qse + Xalez + 4305, (5)

x; = %1Q15 + %sQa3 + x3Qss, (6)

and the elements of the transformation matrix Q are
determined by the equations

7
Qn= E vin Dy /1l V' Spla=bl (i =2, 3), 0

==1

Qi =V (D — @ la) /21a] (i=2, 3), (8
Qs = (a* + Y (a)* — 2b%) /2, (9)
Quo = —Qus + a*, (10}

Qli = (Q2['V21 + QS[Vﬁl)/'Vll (i =2, 3)- (1 1)

Here a* = (Dy — Qu1-Qs11a]) / @] Qg3 0% = @' — Dy/a — Q3.

In order to determine the effective thermal con~
ductivity from (4), besides the enthalpy h and tempera-
ture T, we need to know the reduced concentrations
x¥ and x¥. To find the reduced concentrations we need
to know the concentrations x(, x;, X3 and the elements
of matrix Q. To find the numerical values of the
elements of matrix @, we establish the relation be~
tween the transfer coefficients Dij' A D}[‘ and the
phenomenological coefficients aj;.

To do this we write (1) and (2), using (3), in the
form

!
J, = 2 (A, —ag)grady,  (i=1,2,..,), (12)
k=1

=~
i

N A, grad g, (13)
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Here A, = 2 ay;.

f==]
In the ordinary form the mass and energy equations
are

=—T X

i B
x S Ly, grad, — L,, 7‘ oradT (i=1,2, .0, (14)
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Let us examine the case of mechanical equilibrium
grad p = 0, In this case the Gibbs-Duhem equation
takes the form

i
1 %
frgrad — — x;grad ¢; = 0. 16
grad — ;fl grad (16)

Determining the value of grad T from (16), and
substituting it into (14) and (15), we obtain

i, -
J, =T E (L“,’—;"’———Lm) grady, (i=1,2, ...H (17)
k=1

f
5=\ (LT,\,_ _ Lak) grad . (18)

1

x>

By equating values of coefficients of the independent
variables ¥ in (12) and (17), and (13) and (18), we
obtain the system of equations

Apx; —ay, = (Liu'% —_ Lik) T, (19)
X
By =T (Luu L), (20)

Solving this system, we find the connection between
coefficients e and Lyjy, Lyjn Lyy:

Qi = {Lik — % (%L + x5h5,) +x];—:k Luu} 7. (21)

It may be shown [2] that

Luy=D/ = ¥ Lyh. (23)

The diffusion coefficients of a multicomponent
mixture are [4]

i
nPrn;mm;
S [—pmjD[j—l— )y nkngik] L (24)
k=1

ki

Thus, the following method is suggested for cal-
culation of the effective thermal conductivity Ay¢e.

Knowing the concentration, pressure, temperature,
and coefficients of thermal conductivity, diffusion,
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and thermodiffusion of the components of the mixture,
the values of coefficients Ly; are determined from
(24). Having determined the enthalpy of the component
hj from thermodynamic tables (or by calculation), we
find the values of Ly, and Lyj from (22) and (23), and
then from (21) we determine the coefficients aji.

The elements of matrix @ are determined from
(7)—(11). Then, from (5) and (6), we find the reduced
molar concentrations xy* and x3*. The effective
thermal conductivity is determined from (4).

The method proposed for calculating the effective
thermal conductivity differs from that proposed by
Schott [5], in that in the given case the expression
for calculating the effective thermal conductivity
takes into account not only diffusion, but also thermo-
diffusion components. The method proposed, and the
relation established between the phenomenological
coefficients of type aj; and the ordinary coefficients
Lujr Liyus Lijs allows calculation of the effective
thermal conductivity of any multicomponent mixture
with a single chemical reaction.

NOTATION

xj—molar fraction of i-th component; Jq—energy flux; ]q'—heat
flux; Jj—mass flux of i-th component; T—absolute temperature;
molar chemical potential of i-th component; Lix, Lqq, Liy: Lig»
Lyy %j—phenomenological coefficients related, respectively, to mass
transfer, energy transfer, and superimposed phenomena; h;j—enthalpy
of i-th component; Djj—diffusion coefficient of multicomponent
mixture; Dﬁf— thermodiffusion coefficient of i-th component in the multi-
component system; p—density; n-mixture particle number density;
nj—particle number density of i~-th component; mj—molecular mass of
i-th component; p~pressure of mixture; f~number of components of
mixture; ¥; = —p;/T—Planck potential; h—mixture enthalpy; K;—
fluxes (see(l) and (2)); Djj—cofactor of matrix a; v—a quantity pro-
portional to the stoichiometric coefficient; b—matrix characterizing
flow of chemical reactions in the given system,
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